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ABSTRACT

The purpose of the present project work was tordete the formability of 304 stainless steel altoyfabricate
elliptical cups using single point incremental famm (SPIF) process. The finite element analysisbeen carried out to
model the single point incremental forming processg ABAQUS software code. The process variabfeSRIF were
sheet thickness, step depth, tool radius and oiefti of friction. The process parameters have bmgimized using
Taguchi techniques. The major process parametéieeimting the SPIF of elliptical cups were sheétkhess, step size

and tool radius.
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INTRODUCTION

Formability is a function of sheet metal thicknassl strain hardening. Formability is possible #gcified sheet
metal could be formed effectively into particulangponent or lead to fracture, depending upon tbegss conditions and
the tooling used. Deep drawing is a compressiosi@nforming process [1, 2]. In a series of redeane deep drawing
process to fabricate variety of cup shapes, righstigation have been carried out to improve thpegplastic properties of
materials such as AA2014 alloy [3], AA2219 alloy],[AA2618 alloy [5], AA3003 alloy [6], Ti-Al-4V alby [7], EDD
steel [8] and gas cylinder steel [9]. In SPIF pes¢ehe sheet material is clamped along its edgdsaahemispherical
headed tool is moved along a predefined geomepiidl so that it deforms the sheet locally alorgggath. The important
process parameters, which influence the SPIF psocasability, are tool diameter, step depth, fexd, rsheet thickness,
lubrication, tool path and rotational speed ofghiandle [10-15].

The present work was to study the formability difpéical of 304 stainless steel using SPIF. Fos thirpose, the
design of experiments was executed as per Tagechntque. The process parameters of SPIF were 8fieletess, step

depth, tool radius, and coefficient of friction. & formability was evaluated using finite elementhmoe.
MATERIAL AND METHODS

In the present work, ABAQUS (6.14) software codeswaed for the numerical simulation of SPIF prodess
fabricate elliptical cups. The material was 304rdéss steel. The SPIF process parameters weremcladghree levels as
summarized in table 1. The orthogonal array (OA)wWas preferred to carry out experimental anddieiement analysis

(FEA) as given in table 2.
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Table 1: Process Parameters and Levels

Factor Symbol | Level-1 | Level-2 | Level-3
Sheet thickness, mm A 0.8 1.0 1.2
Step depth, mm B 0.50 0.75 1.00
Tool radius, mm C 4.0 5.0 6.0
Coefficient of friction D 0.15 0.20 0.25

Table 2: Orthogonal Array (L9) and Control Parameters

Treat A B C D
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
I 3 1 3 2
8 3 2 1 3
9 3 3 2 1

The sheet and tool geometry were modeled as defdemand analytical rigid bodies, respectively, gsin

ABAQUS. They were assembled as frictional contaatibs. The sheet material was meshed with S4R slegtients. The

fixed boundary conditions were given to all fouiged of the sheet. The boundary conditions for tesie X, y, z linear

movements and rotation about the axis of tool. Btuess-true strain experimental data were loadéke tabular form as

material properties. The tool path geometry, whighs generated using CAM software [16], was importedhe

ABAQUS as shown in figure 1. The elastic-plastifodmation analysis was carried out for the equintddress, strain and

strain rates and thickness variation.

20

Figure 1: Tool Path Generation

RESULTS AND DISCUSSIONS

The influence of process variables on the von M&tesss, strain rate and thickness reduction dileetlated. The

formability limit diagrams are also created.

Influence of Process Variables on Von Mises Stress

Table — 3 gives the ANOVA (analysis of variatiomjmemary of von Mises stress data. The percent duuiton
specifies that sheet thickness, A, gives 3.90%y siepth, B, consensuses 60.13%, tool radius, Gitgyra3.24% and
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coefficient of friction, D, contributes 2.73% oftéd variation on the von Mises stress.

Table 3: ANOVA Summary of the Effective Stress

Source| Sum1l Sum 2 Sum 3 SS \ V P
A 1487.93 1506.09 1535.05 376.52 o 188.26 3.90
B 1413.11 1599.44 1516.52 5809.86 PR 2904.93 60{13
C 1536.78 1430.82 1561.47 3212p1 |2 1606.00 33|24
D 1502.86 1494.10 1532.11 264.08 P 132.04 2.13
e 0.00 0 0.00
T 5940.69 6030.46 6145.16 966247 BB 100/00

Note: SSis the sum of square, v is the degrees of freedom, V is the variance, P is the percentage of
contribution and T is the sum squares due to total variation.
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Figure 2: Influence of Process Parameters on Von Meés Stress

300 300
(a) . (b)

m
g
B

g

Equivalentstress
2

g

Equivalentstress

n
=

1 15
Equivalent plastic strain

(]

Equivalentstress
ek o
8 B 2

* ._.2.% .

o
=]

Equivalent plastic strain

Figure 3: Effect of Equivalent Plastic Strain on Vo Mises Stress

Figure 2 presents the influence of SPIF procesampeaters von Mises stress induced in 304 staintess. §he
von Mises stress was increased with increase adtghe&kness (figure 2a) as the force that needpioly for a given
amount of elongation was influenced by the sheiektiess. In addition, figure 2a designates the Mises stress as a

function of step depth. The von Mises stress waadao high for step depth of 0.75 mm. The von Mlisgess was found
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to be minimum for tool radius of 5.0 mm as showiigure 2b. Either above or below of this values tron Mises stress

was high. The effective stress increased with areases in the coefficient of friction (figure 2b).

Figure 4: Raster Images of Von Mises Stress in tHeups

As observed from figure 3 that von Mises stresdirisctly proportional to equivalent plastic strakfor the trials
1, 2 and 3, the von Mises stresses were, respBGt/g0.54 MPa, 494.41 MPa and 522.99 MPa. Fotriaés 4, 5 and 6,
the von Mises stresses were, respectively, 451.82,M646.93 MPa and 508.14 MPa. For the trials &)@ 9, the von
Mises stresses were, respectively, 491.56 MPa1638Pa and 485.39 MPa. The ultimate tensile stirenfjB04 stainless
steel is 505 MPa. The von Mises stress exceedetbtisde strength of 304 stainless steel for ttasti3, 5, 6 and 8 while
it was lower than the tensile strength of 304 &sm steel for the trials 1, 2, 4 7 and 9 (figure 4

Influence of Process Variables on Strain Rate

The ANOVA summary of the strain rate is given inblea4. The percent contribution column establisties
major contributions 49.48%, 18.22%, 14.91% and 8% 3f sheet thickness, step depth, tool radius caredficient of

friction, respectively, towards variation in theash rate.

Table 4: ANOVA Summary of the Strain Rate

Source Sum 1 Sum 2 Sum 3 SS Y \ P
A 0.3847349| 0.180872 0.19213F 0.0087%342 | 0.0043767 49.48
B 0.2584297| 0.3190128 0.1803015 0.0032232 0.001612| 18.22
C 0.2089305| 0.3246876 0.22412%58 0.0026882 | 0.0013191 14.91
D 0.27 0.3085791 0.177033 0.00307522 | 0.0015374 17.38
e 2.776E-17 O 0
T 1.12 1.13 0.77 0.02 8 100.00

The strain rate was decreased with increase ot shie&ness (figure 5a) owing to the material aadaility for
plastic deformation. As shown in figure 5a, thaistrate increased initially from 0.50 to 0.75 mfrstep depth and later
on, it decreased with further increase of stepldaptto 1.00 mm. The magnitude of the st&p) down that the tool made
after each pass was an important process variabieh had an effect on the strain rate respondinthé¢ elastic-plastic
deformation of sheet. The effect of tool radius aadfficient of friction on strain rate are sameshewn in figure 5b. The

frictional shear stress is directly proportionathe coefficient of friction as per Coulomb's lafvfiiction (z = uk,, where
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F, is the normal pressure). When the frictional stetegss, reached the limiting shear stress of tieetsmaterial, the
material had undergone the plastic deformationntois point, the frictional shear stress did matréase and had the

value of the limiting shear stress and therebytiirgithe coefficient of friction.
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Figure 5: Influence of Process Parameters on StraiRate
Influence of Process Variables on Thickness Reduoti

The ANOVA summary of the thickness reduction isegivn Table 5. In the decreasing order of contidnjtsheet
thickness, step depth, tool radius, and coefficinfriction accord, respectively, 71.24%, 13.31%4,57% and 0.88%

towards variation in the thickness reduction.

Table 5: ANOVA Summary of the Thickness Reduction

Source Sum 1 Sum 2 Sum 3 SS \% V F P
A 0.48 0.61 0.74 0.01 | 2.000.0056 0.48 71.24
B 0.65 0.64 0.55 0.00| 2.000.0010 0.65 13.31
C 0.66 0.62 0.55 0.00| 2.000.0011 0.66 14.57
D 0.62 0.60 0.62 0.00| 2.000.0001 0.62 0.88
e 0.00 | 0.00 0.00
T 2.41 2.46 2.46 0.02| 8.00 2.41 100.00

The major process parameters, which influence edeation of thickness, are initial sheet thicknetsp depth
and tool radius (figure 6). The reduction of shbakness was increased with increase of initiglestthickness (figure 6a)
attributed to the difference between input sheiektiess and the desired dimensions of the cup.r&tection of sheet
thickness decreased with an increase in step dégtine 6a). The reduction in thickness decreasil increase of tool
radius as shown in figure 6b. The reduction ofkhéss was considered at the centerline of the ehefdrcup as shown in
figure 7. As observed from figures 7, the majodfythickness reduction takes place in the wallshefcup but not in the
flange or bottom of the cup. The elements locatdtieamid regions of the walls were elongated highan those present

at the top and bottom of the cup walls.
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Figure 6: Influence of Process Parameters on Thicless Reduction
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Figure 7: Location of Thickness Reduction in the Di®rmed Cup
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Figure 8: Forming Limit Diagrams (a) for Trials 1, 2, 3 (b) For Trials 4, 5, 6 (c) for Trials 7, 8, 9

Formability of SPIF Process

The formability diagrams of the cups are shown igurfe 8. During initial stages of SPIF, the shead a
compressive stresses were dominating the formglafitelliptical cups of 304 stainless steel. Atelastages of plastic
deformation, the tension was highly predominantltasy the tension in the sheet. For all the trihie major-axis side of

the cup had experienced the compression and miisisale of the cup had accomplished the tension.
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CONCLUSIONS

The major SPIF process variables, which could arfke the formability of elliptical cups of 304 stiaiss steel,

were sheet thickness, step depth and tool radhes.optimal process variables were sheet thickne$anm, step depth

of 0.5 mm, tool radius of 5.0 mm and coefficienfridtion of 0.20.
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